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An improved version of the L C A O  interpolation scheme using metal  s-, p-, 
d-, and non metal  s-, and p-basis functions is presented for transition metal  
compounds with sodium chloride structure. This method enables us to inter- 
polate with reasonable accuracy occupied bands as well as unoccupied energy 
bands up to 0.9 Rydberg above the Fermi level for the compounds ScN, ScP, 
TiN and ZrN. Due  to the limited basis, problems arise however with bands 
of predominant ly  transition metal  f or non metal  d character lying in this 
energy range - as is the case for ScP. 

Optimized paramete r  sets are presented for the compounds ScN, ScP, TiN 
and ZrN. They were used for the calculation of the imaginary part  of the 
complex dielectric function, e2(w), as will be shown in two forthcoming papers.  
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1. Introduction 

Recently reliable measurements  of the optical reflectivity were per formed for 
TiN[l] ,  ZrN[1],  ScN[2] and ScP[2] and curves of the imaginary part  of the 
complex dielectric function, e2(o)), were reported.  

If one assumes that excited states in a solid can be approximatively described 
by unoccupied ground state one electron energies and corresponding wave 
functions, it is in principle possible to calculate the interband contribution to 
e2(o)) using ground state band structure energy levels and to compare  the results 
with the measured curves [3]. 
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For the four compounds mentioned above, which crystallize in the sodium 
chloride structure, self consistent ground state APW energies are available for 
29 nonequivalent k points in the irreducible wedge of the first Brillouin zone 
[4-7]. This number  of k-points is of course not sufficient for a precise integration 
over the Brillouin zone which, however, is necessary for calculating ~2(to). 

Therefore  an interpolation scheme generating additional energies at a sufficient 
high number of k points is needed. As the e2(a~) measurements cover an energy 
range of 0.03 to 12 eV, states up to 0.9 Rydberg above the Fermi level have to 
be included. This means interpolation of mostly ten, in some cases even eleven 
valence bands. 

For the calculation of the density of (mainly occupied) states of the four com- 
pounds an L C A O  interpolation scheme following Slater and Koster [8] using a 
basis of nine Bloch sums constructed from mutually orthogonalized metallic d 
and non metallic s and p atomic orbitals had been used and had given satisfactory 
results for at least the occupied valence bands. If, however, higher bands over- 
lapped the metallic d bands as was the case for ScP and ZrN the fit of the ninth 
band was not very good. The nine Bloch sums basis is of course not able to 
reproduce more than nine bands. Therefore  the existing L C A O  interpolation 
program had to be extended by including additional Bloch sums formed from 
metallic s and p atomic orbitals in the basis which now contains thirteen Bloch 
sums. 

This necessary extension produced however serious numerical problems con- 
nected with the search for good starting values for the LCA O  parameters and 
with the convergence of the optimizing procedure.  

Therefore  some modifications of the routine were made. As these may be of 
interest to other users of interpolation programs they will be published in this 
paper together with the optimized parameter  sets for TiN, ZrN, ScN and ScP. 
Later  publications will contain the results of the e2(~o) calculations for TiN and 
ZrN [15], and the corresponding results for ScN and ScP [16]. 

2. The LCAO Interpolation Scheme 

2.1. Short Description of the Method 

The LC AO interpolation scheme as proposed by Slater and Koster [8] and 
applied to refractory compounds has already been described elsewhere [7, 9]. 
However,  for sake of clarity the principal facts will be displayed once more. 

The L C A O  interpolation wave function for a solid is a linear combination of 
Bloch sums xi(k, r) constructed by applying the projection operator  for the 
irreducible representation k of the translational group to atomic orbitals chi(r). 
The index i and ] respectively, indicates both the form of the function (orbital 
and magnetic quantum number (lrn) of the orbital) and which type of atom it 
is centred on. If orthogonalized Bloch sums are required, L6wdin orbitals ~i(r) 
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instead of atomic orbitals are used in the sum. They are formed from the 
respective atomic orbitals by the so called symmetric L6wdin orthogonalization 
[101. 
Matrix elements of the Hamiltonian between two Bloch sums are a sum of 
energy integrals U~a(t.. + Tij), the so-called LCA O  parameters: 

<x,(k, r)[YgIx~(k, r)> = (1/~ Y. exp (ik . (t,,+ Tij))(Oi(r)lYg[Oj(r-t,,- Ttj)> 
t . , c  T 

= Y, exp (ik(t.,+ Tij))Ei,j(tn'+ Tij) (1) 
t~,~ T 

~ is the order  of the translational group. 

The sum in Eq. (1) extends over all lattice translations t.. T~ i is the distance 
between the lattice sites i and ] in the same unit cell. The energy integrals 
E~,j(t. + T~j) between a L/Swdin orbital centred at the lattice site i and another 
orbital centred at another site ] at a distance t. + T~j from it are determined by 
a non-linear least squares procedure fitting the eigenvalues of the LCAO 
Hamiltonian matrix H(k)  to the known APW energies at k points belonging to 
the set of 29. 

To start the fitting procedure it is necessary to assume some starting values for 
the energy integrals which will now be called LCA O  parameters Or. The numbers 
/' characterizing the various energy integrals are listed in the second column of 
Table 1. The right choice of starting values for the parameters is one of the 
critical points for the usefulness of the method. 

The non linear least squares procedure converges finally to an optimized LCA O  
parameter  set which is used for generating and diagonalizing the Hamiltonian 
matrix H at as many k points as required for an accurate Brillouin zone 
integration (density of states, joint density of states, e2(~o)). 

2.2. Difficulties and Restrictions of the ConventionaI L C A  O Interpolation Method 

In principle the search for the best LCAO parameters may be undertaken in 
two slightly different ways: firstly one can use the unsymmetrized LCAO matrix 
and calculate its eigenvalues for all k points with known APW energies [7, 9]. 
In this case the choice of the starting values for the LCA O  parameters is rather 
critical: the LC AO matrix has the same dimension as the total number of basis 
functions and the LCAO parameters very often do not converge at all or converge 
to unphysical parameter  sets, especially when the starting values for the para- 
meters are far away from the optimal values. 

With few basis functions one can find in most cases suitable starting values for 
the parameters by the following method: by an unitary transformation the 
n-dimensional LCAO matrix splits for a symmetry point kj in several lower- 
dimensioned submatrices belonging to various irreducible representations of the 
point group of kj. If n is not bigger than nine (as with the LCA O  interpolation 
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used before) some of these irreducible submatrices are only one- or two- 
dimensional. If the unknown eigenvalues of these small submatrices are replaced 
by the known corresponding APW energies, linear and quadratic equations for 
the parameters result. The solutions of these equations are then used as starting 
values for the parameters in an unsymmetrized LCA O  calculation. 

If, however, more basis functions have to be taken, as in the present case, most 
of the irreducible submatrices are higher dimensioned and there are not sufficient 
linear and quadratic equations available for all important parameters.  This may 
very well be one of the main reasons why the L C A O  interpolation was said to 
be unable to fit the unoccupied bands fairly above the Fermi level [11]. 

Another  general problem when using the LCA O  interpolation with an unsym- 
metrized basis lies in the fact that the correct ordering of the LCAO energies 
with respect to the APW energies is not guaranteed. Only if the main /-like 
component  of the LCAO wave function corresponds to the principal /-like 
component  of the corresponding APW wave function the LCA O  parameters 
have converged to "physically" and not only numerically optimized values. 

For  determining the optimized parameter  sets the LCA O  as well as the APW 
energies for each k point are arranged in increasing magnitude and then equal- 
ized. Especially when using bad starting values, it may happen with this method 
that an L C A O  eigenvalue belonging in principle to an irreducible representation 
/z, which is of course unknown to the unsymmetrized program, is fitted to an 
AP W  energy belonging to a different irreducible representat ion/z ' .  In this case 
the LC AO parameters do not converge or reach only an unphysical minimum. 

Because of these difficulties some authors use a symmetrized version of the 
L C AO interpolation scheme [12, 13]. 

When applying at a symmetry point kj projection operators for the irreducible 
representat ions/x of the point group of the wave vector ~kj to the LCAO wave 
functions composed of Bloch sums xi(k, r) a new symmetrized basis x'(k, r) is 
generated, x'(k, r) results also if the Hamiltonian matrix H in the basis X is 
submitted to a similarity transformation by the unitary matrix U: 

H'= U+HU (2) 

x = x U  (3) 

In the symmetrized basis H '  splits into submatrices belonging to the various 
irreducible representations of ~ki. The LCAO  eigenvalues are now separately 
found for each irreducible submatrix and can be fitted to the APW eigenvalues 
belonging to the same irreducible representation. 

The various LCAO submatrices in three symmetry directions of the NaC1 
structure ([100], [110], [111]) for the different irreducible representations of ~k~ 
are given analytically by Honig and Wahnsiedler [13]. Their  Bloch sums are 
however not normalized. Therefore,  some of their rows and columns must be 
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divided by a constant factor. The irreducible submatrices for the point W 
, r .  

(kj = (048) 4d '  ~z: lattice parameter) missing in Ref. [13], are listed in Appendix 

A of the present paper. 

When using the symmetrized version of the LCAO interpolation scheme the 
LCAO eigenvalues are always fitted to the APW energies with the same symmetry 
properties. Therefore, the main /-like component of the LCAO wavefunction 
is the same as in the APW calculation. In this case the choice of starting values 
for the parameters is not so critical for the right convergence of the fitting 
procedure. 

There are, however, also disadvantages when using the symmetry-adapted 
LCAO basis. The irreducible LCAO submatrices must be set up separately for 
each symmetry point kj or symmetry direction. They are not defined for general 
k points or even symmetry planes. Therefore when determining optimized values 
only a small number of all the known APW energies can be actually used (the 
29k point mesh contains some general k points and many k points situated only 
on symmetry planes). 

Finally, when calculating densities of states, e2(oJ) or other Brillouin zone 
integrals, a different routine must be used to find LCAO eigenvalues and 
eigenvectors for arbitrary and general k points. 

2.3. Short Description of the Modified LCAO Calculations 

The modified version of the LCAO interpolation scheme, which we used for 
calculating the LCAO energies needed for the computation of ez(tO), combines 
the advantages of the symmetrized and non-symmetrized version. 

As already mentioned thirteen Bloch sums originating from metallic s, p, and d 
L6wdin orbitals [sM, p~, dM] and from non metallic s and p L/Swdin orbitals 
[sN, pN] were included in the basis. For every k the full unsymmetrized 13 • 13 
Hamiltonian matrix is set up. When the program encounters a symmetry point 
k i a special procedure assures that all the LCAO energies for this point belonging 
to a special irreducible representation of ~kj are fitted to the APW eigenvalues 
belonging to the same irreducible representation. 

The matrix elements of the Hamiltonian between two Bloch sums depend 
linearly on the LCAO parameters Qj. The dependency of the energy eigenvalues 
on O1- is given by the Hellman-Feynman theorem [14]: 

OE LcAo (k) 
(k) ~ C,(k) (4) aO~ C+ 

This is no longer a linear dependence because the eigenvectors C,(k) depend 
on the parameters Qj as well. 

By inspection of the symmetrized LCAO submatrices in [13] and also of Appen- 
dix A one finds almost for every symmetry point kj a special parameter Qr only 
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appearing in the diagonal element H~'m (kj) of a submatrix belonging to a special 
irreducible representation /z'. In this case the matrix (Olt(kj)/OOr) contains 
besides the diagonal element (OH~'m (ki)/OO r) only zeros. Therefore: 

oEn (kj) + ol-t(kj) . . . . .  oH 'm (k;)  (5) 
= C .  (kj)  entKU - cm(kj)  2 

oOr oQj, 

and: 

Fo o(k,  1 JoHns(k,) 1 
sign L ~ J  = sign L 0-Qi~ J 

En(kfl belongs to the irreducible representation /x' of Gkr (For parameters 
appearing in the non diagonal elements of H the sign cannot be predicted as it 
depends upon the signs and relative magnitudes of the coefficients cn (k).) 

Now for each of the thirteen eigenvalues Ei(ki) of the unsymmetrized LCAO 
Hamiltonian matrix one asks if 

OE'(ki) # 0 and sign [OEi(kfl] . FoEn(k;)] 
OQ r I_ OQ r j = s l g n L ~ j .  

If these two conditions are fulfilled for an eigenvalue Ei,(k~) than Er(kj) corre- 
sponds to the eigenvalue En (kj) of the symmetrized LCAO matrix and belongs 
therefore as well as the latter to the irreducible representation tt ' of Gkr 
Accordingly it must be fitted to the APW energy for this special irreducible 
representation. 

An example of this symmetry control method is given in appendix B for kj -- W. 
Possible extensions are there discussed as well. 

For the four substances investigated in this paper the symmetry control described 
above enabled us to use estimated starting values of the parameters to begin 
the iteration cycte. We took mean values of the/-like s-, p- and d-bands for the 
"orbital" parameters Ei,~(O00) and an arbitrary value of 0.05 for the more 
important parameters. Energy integrals which we supposed to be small were set 
to zero. With this set of starting values the parameters converged reasonably 
fast to physically meaningful values. 

We used a total of 45 parameters taking thirteen Bloch sums, including interac- 
tions up to third-nearest neighbours. (When using nine Bloch sums and including 
interactions up to fifth nearest neighbours a total of 41 parameters results, as 
for example in Ref. [7]). 

In the following paragraph the optimized LCAO parameters for TiN, ZrN, ScN 
and ScP are presented and discussed. 

3. Optimized LCAO Parameter Sets for TiN, ZrN, ScN and ScP 

Table 1 shows the optimized LCAO parameter sets for TiN, ZrN, ScN and ScP 
together with the root mean square and the largest deviation of the corresponding 
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Table 1. LCAO parameters in Rydberg corresponding to the best fit to the self consistent APW 
energies for TiN, ZrN, SeN and ScP. Deviations between LCAO and APW energies are summarized 
at the bottom of the table. The parameter values are given with respect to the constant muffin tin 
potentials of the individual compounds. 

Nomenclature 
used in 
computer 

Name of energy program and 
integral used in appendices Values for 
as parameter A and B TiN ZrN ScN ScP 

Es~,~su (000) 01 -0.300472 -0.225952 
Es~c.m (110) (22 -0.011115 -0.009616 
Es~.xN(110) 03 -0.001646 0.008076 
Es~,xyM(111) (24 -0.010845 0.010670 
EsN.(3z~-r2)M(O01) (25 0.072098 0.088562 
E,u,s~(100) (26 -0.032451 -0.003060 
Esr,,~(111) (27 0.017985 0.032143 
Es~,x~(100) (28 0.013841 0.027127 
Es~,x~(ll 1) (29 -0.020105 -0.019375 
E~,xrr Qlo 0.686648 0.726504 
E~vr (211 0.034449 0.033350 
E~.~(011)  (212 0.005709 0.018661 
E~n, yN(110) ( 2 1 3  -0.005397 0.010339 
E~N.~yM(010) (214 0.096672 0.104343 
E~N,~y~(111) ( 2 1 5  -0.002954 -0.000460 
ExN, y~(111) ( 2 1 6  --0.006271 --0.000939 
EzN,(3zZ-r2)~(O01) (217 0.145748 0.170906 
E~,(~2-v2)~(111) ( 2 1 8  -0.001279 -0.002054 
E~r (100) ( 2 1 9  -0.142766 -0.114195 
ExN,~M(ll 1) (220 0.013615 --0.007939 
E~ ,~(111)  (221 0.108635 0.135951 
EyN.y~(100) 022 0.105492 0.107924 
E~ ,~u( l l  1) ( 2 2 3  -0,014292 -0.008536 
E~.y~(111) ( 2 2 4  -0.006514 0.002698 
EXYM, XYM(O00) (225 0.810386 0.885294 
E~y~,~y~(110) ( 2 2 6  -0.038183 -0.061192 
E~y~,~y~(011) (227 0.012335 0.015403 
E~y~.~(011) (228 0.014417 0.010291 
ExYM,(3z2--r2)M(110) ( 2 2 9  --0.010409 --0.018236 
Exy~,~(110) Q3o 0.006977 0.010719 
Exyg,~(110) Q31 0.024344 0.037528 
E~y~,~M(011) ( 2 3 2  --0.020799 -0.020981 
E(3z2--r2)M,(3z2--rZ)M(O00) (233 0.939282 1.021411 
E(3zZ--r2)M,(3z2--r~)M(llO) ( 2 3 4  -0.002809 -0.004961 
E(x 2 y2)M,(X2--y2)~(110) ( 2 3 5  --0.015188 --0.011882 
E(3~z-~2)~,~M(ll0) (236 0.010475 -0.018027 
E(3~2-~2)~,~(011) ( 2 3 7  -0.003841 -0.019558 
E(~2-y2)~,~(011) (238 0.022651 0.000097 
EsM,~(000) (239 1.499727 1.474196 
E~.~(110)  O4o -0.024254 -0.041598 
E~,xM(110) , ( 2 4 1  -0.002273 --0.011439 
Ex~:,xM(O00) 042 1.572115 1.613293 

-0.311885 
-0.002374 
-0.009992 
-0.011028 

0.077975 
-0.055251 
-0.009019 
-0.037947 
-0.015336 

0.688497 
0.042520 

-0.000048 
-0.019819 

0.074280 
-0.002842 
-0.004421 

0.144780 
0.007345 

-0.173007 
0.006950 
0.216247 
0.082365 

-0.000194 
-0.008441 

0.829359 
-0.041400 

0.012856 
0.013585 

-0.012451 
-0.016738 

0.001042 
-0.006825 

0.959335 
-0.003252 
-0.017136 
-0.023526 

0.004993 
-0.022430 

1.222313 
-0.024446 
-0.012007 

1.632127 

-0.052082 
0.004121 
0.015402 

-0.018186 
0.002615 

-0.135479 
0.024491 

-0.101387 
0.025448 
0.642561 
0.057136 
0.020375 

-0.011130 
0.100036 

-0.002139 
-0.008563 

0.105882 
0.001811 

-0.128831 
0.015792 
0.093145 
0.065059 

-0.016760 
-0.004765 

0.587870 
-0.028962 

0.007114 
0.008180 

-0.012831 
0.015681 
0.012245 

-0.015847 
0.691545 

-0.000707 
-0.019278 

0.018324 
-0.013056 

0.009080 
1.035356 

-0.026552 
-0.004485 

0.868113 
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Nomenclature 
used in 
computer 

Name of energy program and 
integral used in appendices Values for 
as parameter A and B TiN ZrN ScN ScP 

E~M,x~(ll0) Q43 -0.009866 0.006063 0.020430 -0.001180 
E~,xM(011) 044 -0.031083 -0.050590 0.007057 -0.047543 
Ex~,yM(ll0) Q45 0.041203 0.059331 0.065020 0.033465 

Root mean square deviation (in mRyd) 10.4 10.2 9.3 9.4 
Maximum deviation (in mRyd) 21.4 20.8 20.2 19.1 

L C A O  eigenvalues f rom the A P W  energies. In the first column the names of 
the energy integrals are given using the nomenclature  of Refs. [5-9]. The second 
column contains the names of the parameters  as used in Appendices A and B. 

General ly  speaking the max imum deviation of the interpolated f rom the ab initio 
energies lies about  0.02 Ryd which for most  of the cases is noticeably smaller 
than in Ref. [7]. 

The L C A O  energies should not only lie as close as possible to the A P W  energy 
states, they should also possess a similar l character.  One way of checking this 
is to compare  the L C A O  partial densities of states [7] constructed f rom the 
L C A O  eigenvectors with the A P W  character densities [4-7]. The principal 
features of these two sets of quantities prove indeed to be the same. Minor 
differences are due to the coarser k mesh of the A P W  calculation and to the 
fact that whereas the L C A O  par t ia l / - l ike  densities of states are set up for the 
whole e lementary  cell, the A P W  character densities are defined only for a 
particular muffin tin sphere. 

A comparison of the present  L C A O  interpolation using thirteen Bloch sums as 
basis with the nine Bloch sums interpolation of Ref. [7] shows a strong depen-  
dence of the values for the various parameters  on the number  of basis functions. 
The  general aspect of the par t ia l / - l ike  densities of states is the same for both 
interpolations but there are some differences in the fine structure due to the 
different quality of the fits and to the fact that some of the missing functions in 
the old nine Bloch sums fit are simulated by other functions. The nine Bloch 
sums fit showed for example a non negligible non metallic s partial density of 
state in the energy region of the d bands. If metal  s and p functions are included 
in the basis as in the present  interpolation, this non metallic s component  is 
replaced by a metallic s component  of the density of states. 

In the following paragraphs the fits are discussed in detail for every compound.  
To illustrate the discussion the plotted L C A O  band structures using 333 non 
equivalent k points in the symmetry  directions F --> A--> S -> Z --> W --> (2 --> L --> 
A--> F--> Z --> K are shown in Figs. 1 to 4. Little crosses mark  the A P W  energies. 
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Fig. 1. Interpolated LCAO energy bands (points) 
and APW eigenvalues (shown as crosses) for TiN. 
E~ is the Fermi level. All energies are given with 
respect to the constant muffin-tin potential 
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Fig. 2. Interpolated LACO energy bands (points) 
and APW eigenvalues' (shown as crosses) for 
ZrN. EF is the Fermi level. All energies are given 
with respect to the constant muffin-tin potential 

>- 
O~ 
z 

u~ 
> -  o 
(_9 
O~ 
LU 
Z 
LU 

o. 
o 

r 

/ 
,.~ /' 

o 

A 

/ 
/" 

~, j 

"" ~rh"\ ...... -i)./r-., 
1 i 3 @  �9 / I 

1 3"N 

~ r /1 "-.. 

ZN 0 L A F ~ K 

Fig. 3. Interpolated LCAO energy bands (points) 
and APW eigenvalues (shown as crosses) for 
ScN. EF is the Fermi level. All energies are given 
with respect to the constant muffin-tin potential 
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Fig. 4. Interpolated LCAO energy bands (points) 
and APW eigenvalues (shown as crosses) for ScP. 
EF is the Fermi level. All energies are given with 
respect to the constant muffin-tin potential 
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1. TiN 

As shown in Fig. 1 ten bands and parts of the eleventh band up to 1.65 Ryd 
(0.9 Ryd above the Fermi level) were satisfactorily fitted with a maximum 
deviation of 21.4 mRyd. Contrary to predictions in Ref. [7] that the LCAO 
method should not be suitable for fitting the higher unoccupied bands, all bands 
seem to be equally well fitted. The good fit of the tenth band was however only 
possible because the basis contained also Bloch sums originating from metal p 
functions. Whereas the tenth valence band of TiN has pure metal s character 
at the origin of the Brillouin zone (F), only an appropriate linear combination 
of metallic p functions (px +Py +Pz) is a suitable basis at the surface of the 
Brillouin zone (at the point L = (444)Tr/4e) for the irreducible representation L1. 

A comparison of the numerical values of the present LCAO parameters with 
those of Ref. [7] shows that most of the parameters have fairly different values-- 
especially those describing interactions with non metal p functions. Probably 
these parameters include implicitely effects of metallic p functions in case of the 
previously used nine Bloch sums interpolation. Therefore most of the parameters 
besides the most important ones with similar values in both calculations are 
strongly basis dependent. 

2. ZrN 

As shown in Fig. 2 ten bands up to 1.65 Ryd (0.85 Ryd above the Fermi level) 
were fitted with a maximum deviation of 20.8 mRyd. Unfortunately the eleventh 
band beginning at 1.42 Ryd (0.65 Ryd above EF) shows metallic f symmetry at 
F (irreducible representation Fz,) and metallic and non metallic d symmetry 
along the symmetry direction A (A2,). The present LCAO calculation cannot 
reproduce this part of the tenth band because the basis neither contains Bloch 
sums originating from metallic f nor from non metallic d functions. 

3. ScP 

An analysis of the APW partial /-like charges [5] for each eigenvalue of ScP 
reveals that in this case already the tenth band possesses a certain amount of 
phosphorous d character (mainly of tzg symmetry at A, E, A, but also components 
of eg symmetry for other states). As the LCAO basis does not contain Bloch 
sums formed from phosphorous d orbitals the fit is rather bad for parts of the 
tenth band. Therefore only nine bands plus the overlapping part of the tenth 
band including APW energies up to 0.85 Ryd (6.12 eV above the Fermi level) 
were fitted for ScP. In this limited energy range the maximum deviation of the 
fitted energy bands from the APW eigenvalues was only 19.1 mRyd. 

Fig. 3 shows the LCAO band structure of ScP together with the APW energies 
marked as crosses. 

4. ScN 

Fig. 4 shows the LCAO band structure of ScN together with the APW energies 
marked as little crosses. Energies up to 1.4 Ryd (11.5 eV above the Fermi level) 
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were  f i t ted inc luding  in this case n ine  bands  and  par t s  of the  t en th  band .  The  
m a x i m u m  dev ia t ion  was 20 m R y d .  

4. Conclusion 

The  successful  inc lus ion of four  B loch  sums or ig ina t ing  f rom t rans i t ion  me ta l  s 
and  p orb i ta l s  in the  basis  for  the  L C A O  fit m a k e s  it poss ib le  to  ex t end  th~ 
ene rgy  r ange  of the  fit and  to a u g m e n t  the  n u m b e r  of va lence  bands  to  be  fi t ted. 
C o n t r a r y  to  p red i c t i ons  in Ref .  [7] all bands  are  equa l ly  well  f i t ted if they  do  
not  possess  a la rge  c o m p o n e n t  of t rans i t ion  me ta l  f or  non m e t a l  d cha rac t e r  
as for  e x a m p l e  the  t en th  va lence  b a n d  of ScP. In this case it w o u l d  be  advan -  
t ageous  to  inc lude  add i t iona l  Bloch  sums ar is ing f rom meta l l i c  f o r  non  meta l l i c  
d orb i ta l s  in the  basis.  

T h e  add i t i ona l  inclusion of B loch  sums cons t ruc ted  f rom non m e t a l  d funct ions  

w o u l d  change  the  d imens ion  of the  L C A O  H a m i l t o n i a n  ma t r i x  f rom 13 to 18 
and  the  to ta l  n u m b e r  of d i f ferent  ene rgy  in tegra ls  f rom 45 to 74 t ak ing  into  
accoun t  in te rac t ions  up  to t h i r d - n e a r e s t  ne ighbours .  Bes ides  d e m a n d i n g  m o r e  
c o m p u t e r  t ime  for  the  fit it wou ld  also be  necessa ry  to k n o w  A P W  or  o t h e r  first 
p r inc ip les  ene rgy  e igenva lues  up to very  high e n e r g i e s -  at  leas t  for  the  mos t  
i m p o r t a n t  s y m m e t r y  points .  

W h e r e a s  feas ib le  wi th  fast  c o m p u t e r s  and  the  new s y m m e t r y - c o n t r o l l e d  vers ion  
of the  fi t t ing p r o g r a m  which,  enab les  us to use  m o r e  or  less a rb i t r a ry  n u m b e r s  
as s ta r t ing  va lues  for  the  L C A O  p a r a m e t e r s  this ex tens ion  wou ld  h o w e v e r  m a k e  
the  L C A O  fit m o r e  c u m b e r s o m e -  an aspec t  which shou ld  no t  be  neg lec ted  at 
a m o m e n t  w h e r e  a n u m b e r  of fast  band  s t ruc ture  m e t h o d s  ( L M T O ,  L A P W ,  fast  
K K R )  are  avai lab le .  
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Appendix A: Reduced Submatrices of the LCAO Hamiltonian Matrix for 
k/= W = (048)~r/4~ for a Compound with Rocksalt Structure 

When using symmetry-adapted linear combinations of Bloch sums as basis, the 13 • 13 LCAO 
Hamiltonian matrix splits at the symmetry point W into a 1 • 1 submatrix belonging to the irreducible 
subspace of W2, two degenerate 3 • 3 matrices for the irreducible subspaces W3, a 3 • 3 submatrix 
for W 1 and finally another 3 • 3 matrix for W2,. The matrix elements of these submatrices are given 
below including only interactions with next and second-nearest neighbours. The LCAO parameters 
Qi are designated according to Table 1. 

W2: A Bloch sum originating from a metallic t2g orbital is the basis. 

[Q25 -4026] 

Wa: (twice degenerate) 
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The basis consists of Bloch sums formed from metallic and non metallic p functions and from a 
metallic t2g orbital. 

- PN (t2g)M 

Qlo-4Qlt  2iQ14 
Q25 -4Q27 

PM 

2Q21-2Q22 

4i(Q31 - Q32) 

Q42 - 4 Q43 

Wl: The basis contains Bloch sums formed from non metallic s and metallic p and eg orbitals. 

sly (eg)M PM 

01 -- 4 Q2 2x/305 2 iOs 
033--4035 --8i038 

042 - 4 044 

We,: The basis consists of Bloch sums constructed from non metallic p and metallic s and eg orbitals. 

" PN ( e~ )M s ~  

010--4012 2iQ17 2iQ19 

Q33 -4Q34 -4Q36 

Q39 - 4 Q4c 

Appendix B: Correct Sequence of LCAO Eigenvalues at kj = W 
(an Example for Symmetry Control) 

To set up the conditions for the correct sequence of LCAO eigenvalues at a special symmetry point 
(in this case W) Table 2 is constructed. 

In its first column the names of all the irreducible representations of ~3kj with APW energies in the 
interesting energy range of the valence bands are tabulated. All these APW energies are numbered 
in increasing order of magnitude and these numbers listed in column 2. In brackets one finds the 
main I character of the energy state to which the eigenvalue belongs. In our example we treat the 
refractory compound TiN with a non metal s band followed by non metallic p, metallic d, metallic 
s and p bands. 

Then the formulae for the diagonal matrix elements of the reduced Hamiltonian submatrices given 
in Appendix A are inspected for suitable parameters appearing only in one of these submatrices. 

T a b l e  2. Symmetry control for the k-point Wof TiN 

Corresponding 
Irreducible Number of APW LCAO energy OE,,(ki) 
representation tt eigenvalue (TIN) should depend on 

00j(~) 

W1 l[sN] 02 <0 
6[(eg)M] Qa5 <0 
10[pM] Q44 < 0 

W3 2[pN] Qll < 0 
4[(t2g)M] Q27 < 0 
8[pM] Q43 < 0 

W2 5[(t2g)M] Q26 < 0 
W2' 3[pN] Qx2 < 0 

7[(eg)M] 034 < 0 
9[s~] Q4o <0 
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These parameters are written down in the third column of the table. The fourth column contains 
information about the sign of the energy derivative OE/OQ i. 

Of course every eigenvalue of the submatrix for the irreducible space W1 would depend on the 
parameter Q2 (second nearest neighbour interaction between two non metal s orbitals) but this 
dependence will be strongest for the eigenvalue belonging to the non metal s band i.e. the first 
eigenvalue for TiN. 

The program asks therefore if the smallest LCAO eigenvalue decreases with increasing Q2. If not, 
the next LCAO eigenvalue depending on Q2 is searched for and interchanged with the first LCAO 
eigenvalue. For TiN the second energy should be the smallest energy for the irreducible representation 
W3 belonging to the non metallic p band. With our table we find that it should depend on Qll.  If 
the second LCAO eigenvalue does not decrease with increasing Q11, the smallest energy fulfilling 
this condition is interchanged with Ez(kj ) . . .  and so on until the sequence of LCAO energies equals 
the sequence of APW eigenvalues for k i = W and all the other symmetry points and directions. 

This method works satisfactorily for the simple band structures treated in this paper. For more 
complicated band structures it might be necessary to use a sharper criterion. 

Instead of asking only if for example 

OEl(ki) < 0 
aQ2 

one asks if 

OEl(ki) <O and OEl(ki) OE"(ki) 
OQ2 OQ2 =max ~ n = l . . .  13 

and finds out which of the LCAO eigenvalues shows the strongest dependence on Q2. If necessary 
this eigenvalue is then interchanged with the first energy. 
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